The Solvay Conference: There Are 17 Nobel Laureates In This Photograph
BY THE INDIAN ENTERTAINER
story source: rarehistoricalphotos
When the best minds met
Take a close look at the photograph. This is probably the only evidence that some of the most brilliant minds, the world has ever witnessed, flourished almost during the same time. In this photograph,taken in October 1927, 17 of the 29 attendees went on to become Nobel laureates.
This photograph was taken during the fifth edition of the Solvay Conference.
The year 1912 marked the foundation of the International Solvay Institutes for Physics and Chemistry in Brussels, Belgium. Founded by businessman Ernest Solvay, this was considered a turning point in the world of physics. Since its inception, many great scientists in the world gathered together at three years interval to discuss the most perplexing problems in the world of physics and chemistry. But the 1927 conference remains to be the most famous, where some the most distinguished physicists came together to discuss the newly formulated quantum theory.
The leading figures were Albert Einstein and Niels Bohr. Einstein, disenchanted with Heisenberg’s uncertainty principle, remarked “God does not play dice”, to which Bohr replied, “Einstein, stop telling God what to do”.
The Scientists attending the Solvay Conference:
Back row (Left to Right)
Auguste Picarde: Made record-breaking ascent to 53,152ft in a balloon and also designed submarines.
Emile Henriot: He detected the natural radioactivity of potassium and rubidium. He made ultracentrifuges possible and pioneered the electron microscope.
Paul Ehrenfest: He remarked that Special Relativity makes the rim of a spinning disk shrink but not its diameter. This contradiction with Euclidean geometry inspired Einstein’s General Relativity.
Edouard Herzen: A Paris-based artist with an interest in psychoanalysis. He played a leading role in the development of physics and chemistry during the twentieth century.
Théophile de Donder: He is considered the father of thermodynamics of irreversible processes. He defined chemical affinity in terms of the change in the free enthalpy.
Erwin Schrödinger: Conducted the famous experiment known as Schrödinger’s cat, which postulated that something could exist in two states until it was observed.
Jules Emile Verschaffelt, the Flemish physicist, got his doctorate under Kamerlingh Onnes in 1899.
Wolfgang Pauli: He formulated the exclusion principle which explains the entire table of elements.
Werner Heisenberg: He replaced Bohr’s semi-classical orbits by a new quantum logic which became known as matrix mechanics (with the help of Born and Jordan). The relevant noncommutativity entails Heisenberg’s uncertainty principle.
Sir Ralph Howard Fowler: He supervised 15 FRS and 3 Nobel laureates. In 1923, he introduced Dirac to quantum theory.
Léon Nicolas Brillouin: He practically invented solid state physics (Brillouin zones) and helped develop the technology that became the computers we use today.
Middle Row (Left to Right)
Peter Debye: He pioneered the use of dipole moments for asymmetrical molecules and extended Einstein’s theory of specific heat to low temperatures by including low-energy phonons.
Martin Knudsen: He revived Maxwell’s kinetic theory of gases, especially at low pressure: Knudsen flow, Knudsen number etc.
William Lawrence Bragg: He was awarded the Nobel prize for physics jointly with his father Sir William Henry Bragg for their work on the analysis of the structure of crystals using X-ray diffraction.
Hendrik Kramers: Was the first foreign scholar to seek out Niels Bohr. He became his assistant and helped develop what became known as Bohr’s Institute, where he worked on dispersion theory.
Paul Dirac: Came up with the formalism on which quantum mechanics is now based. In 1928, he discovered a relativistic wave function for the electron which predicted the existence of antimatter, before it was actually observed.
Arthur Holly Compton: He figured that X-rays collide with electrons as if they were relativistic particles, so their frequency shifts according to the angle of deflection (Compton scattering).
Louis de Broglie: He discovered that any particle has wavelike properties, with a wavelength inversely proportional to its momentum (this helps justify Schrödinger’s equation).
Max Born: His probabilistic interpretation of Schrödinger’s wave function ended determinism in physics but provided a firm ground for quantum theory.
Front Row (Left to Right)
Irving Langmuir: He was an American chemist and physicist. His most noted publication was the famous 1919 article “The Arrangement of Electrons in Atoms and Molecules”.
Max Planck: He originated quantum theory, which won him the Nobel Prize in Physics in 1918. He proposed that exchanges of energy only occur in discrete lumps, which he dubbed quanta.
Niels Bohr: Neils Bohr started the quantum revolution with a model where the orbital angular momentum of an electron only has discrete values. He spearheaded the Copenhagen Interpretation which holds that quantum phenomena are inherently probabilistic.
Marie Curie: She was the first woman to earn a Nobel prize and the first person to earn two. In 1898, she isolated two new elements (polonium and radium) by tracking their ionizing radiation, using the electrometer of Jacques and Pierre Curie.
Hendrik Lorentz: Discovered and gave a theoretical explanation of the Zeeman effect. He also derived the transformation equations subsequently used by Albert Einstein to describe space and time.
Albert Einstein: He developed the general theory of relativity, one of the two pillars of modern physics (alongside quantum mechanics).He is best known in popular culture for his mass–energy equivalence formula (which has been dubbed “the world’s most famous equation”). He received the 1921 Nobel Prize in Physics “for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect”.
Paul Langevin: He developed Langevin dynamics and the Langevin equation. He had a love affair with Marie Curie.
Charles-Eugène Guye: Guye was a professor of Physics at the University of Geneva. For Guye, any phenomenon could only exist at certain observation scales.
Charles Thomson Rees Wilson: He reproduced cloud formation in a box. Ultimately, in 1911, the supersaturated dust-free ion-free air was seen to condense along the tracks of ionizing particles. The Wilson cloud chamber detector was born.
Sir Owen Willans Richardson: He won the Nobel Prize in Physics in 1928 for his work on thermionic emission, which led to Richardson’s Law.